Vercel AI SDK
Workers AI can be used with the Vercel AI SDK ↗ for JavaScript and TypeScript codebases.
Install the workers-ai-provider provider ↗:
npm i workers-ai-provideryarn add workers-ai-providerpnpm add workers-ai-providerThen, add an AI binding in your Workers project Wrangler file:
[ai]binding = "AI"The AI SDK can be configured to work with any AI model.
import { createWorkersAI } from "workers-ai-provider";
const workersai = createWorkersAI({ binding: env.AI });
// Choose any model: https://developers.cloudflare.com/workers-ai/models/const model = workersai("@cf/meta/llama-3.1-8b-instruct", {});Once you have selected your model, you can generate text from a given prompt.
import { createWorkersAI } from 'workers-ai-provider';import { generateText } from 'ai';
type Env = {  AI: Ai;};
export default {  async fetch(_: Request, env: Env) {    const workersai = createWorkersAI({ binding: env.AI });    const result = await generateText({      model: workersai('@cf/meta/llama-2-7b-chat-int8'),      prompt: 'Write a 50-word essay about hello world.',    });
    return new Response(result.text);  },};For longer responses, consider streaming responses to provide as the generation completes.
import { createWorkersAI } from 'workers-ai-provider';import { streamText } from 'ai';
type Env = {  AI: Ai;};
export default {  async fetch(_: Request, env: Env) {    const workersai = createWorkersAI({ binding: env.AI });    const result = streamText({      model: workersai('@cf/meta/llama-2-7b-chat-int8'),      prompt: 'Write a 50-word essay about hello world.',    });
    return result.toTextStreamResponse({      headers: {        // add these headers to ensure that the        // response is chunked and streamed        'Content-Type': 'text/x-unknown',        'content-encoding': 'identity',        'transfer-encoding': 'chunked',      },    });  },};You can provide a Zod schema to generate a structured JSON response.
import { createWorkersAI } from 'workers-ai-provider';import { generateObject } from 'ai';import { z } from 'zod';
type Env = {  AI: Ai;};
export default {  async fetch(_: Request, env: Env) {    const workersai = createWorkersAI({ binding: env.AI });    const result = await generateObject({      model: workersai('@cf/meta/llama-3.1-8b-instruct'),      prompt: 'Generate a Lasagna recipe',      schema: z.object({        recipe: z.object({          ingredients: z.array(z.string()),          description: z.string(),        }),      }),    });
    return Response.json(result.object);  },};Was this helpful?
- Resources
- API
- New to Cloudflare?
- Directory
- Sponsorships
- Open Source
- Support
- Help Center
- System Status
- Compliance
- GDPR
- Company
- cloudflare.com
- Our team
- Careers
- © 2025 Cloudflare, Inc.
- Privacy Policy
- Terms of Use
- Report Security Issues
- Trademark